Engineering
Amp
Calculations
Engineering
Equipment
Disciplines
Management
Projects
Piping
Mechanical
Structural
General
Equations
Area
Volume
Strength of Materials
Unit Conversions
Density
Flow
Force
Length
Pressure
Temperature
Torque
Velocity
Viscosity
Blog
Time
Sign in
Join
Home
Calculations
This functionality is in
beta stage
.
Calculations
Add Calculation
Sort by
Sort by
name
result name
result symbol
Order
ascending
descending
Sort
all fields
name
description
result name
result symbol
Search
Reset
Show Options
Hide Options
Contains
Match
Equal
* Search is not case sensitive
« Previous
Next »
‹
1
2
3
4
5
6
7
8
9
›
Bin discharge time (min)
public
Time, in minutes (min), required to discharge bin with given volumetric capacity and volumetric flow rate.
Discharge time
$$ t_{bin_{discharge_{min}}} = {\left({ {V_{bin} \over Q_{vol}} }\right) \cdot 60} \; \; , {min} $$
Volumetric flow rate
public
Convert mass flow rate to volumetric flow rate.
Volumetric flow rate
$$ Q_{vol} = {{Q_{mass} \over \rho_{prod}}} \; \; , {{m ^ 3 \over h}} $$
Gearbox reduction ratio
public
Reduction ratio of 2 stage gearbox
Two stage gearbox ratio
$$ i_{gb2} = {i_{gr1} \cdot i_{gr2}} \; \; $$
Section modulus of RHS
public
Section modulus of square hollow section (RHS)
Section modulus
$$ W_{y_{RHS}} = {{\left({ B \cdot H ^ 3 - b \cdot h ^ 3 }\right) \over \left({ 6 \cdot H }\right)}} \; \; , {mm ^ 3} $$
Triangular prism volume
public
Volume of triangular prism.
Volume
$$ V_{prism_{tri}} = {\left({ {\left({ w_{base} \cdot h_{base} }\right) \over 2} }\right) \cdot h_{prism}} \; \; , {m ^ 3} $$
Combined volume
public
Combined volume of rectangular prism and triangular prism.
Combined volume
$$ V_{comb_{rec-tri}} = {V_{prism_{rec}} + V_{prism_{tri}}} \; \; , {m ^ 3} $$
Rectangular prism volume
public
Volume of rectangular prism.
Volume
$$ V_{prism_{rec}} = {w_{base} \cdot l_{base} \cdot h} \; \; , {m ^ 3} $$
Design bending moment in RHS
public
Design bending moment in RHS about the major principal axis analyzed by the elastic methos as per AS4100:2020 Section 4.4.2.2
$$ M_{x_{AS4100}} = {\phi_{ls_{AS4100}} \cdot M_{b_{AS4100}}} \; \; , {Nm} $$
Moment modification factor
public
Moment modification factor for segments fully or partially restrained at both ends
Moment modification factor calculated
$$ \alpha_{m_{cal_{AS4100}}} = {1.0 + 0.35 \cdot \left({ 1 - {\left({ 2 \cdot a }\right) \over l} }\right) ^ 2} \; \; $$
Factor Cm
public
Factor used to calculate moment application factor as per AS4100:2020 Section 4.4.2.2
IF
$ 0.6 - 0.4 * \beta_{m_{AS4100}} $ > $ 1 $
THEN
$$ c_{m_{AS4100}} = {1} $$
OTHERWISE
$$ c_{m_{AS4100}} = {0.6 - 0.4 \cdot \beta_{m_{AS4100}}} $$
Bending moment ratio
public
The ratio of the smaller to the larger bending moment at the ends of the member, taken as positive when the member is bent in reverse curvature as per AS4100:2020 Section 4.4.2.2
$$ \beta_{m_{AS4100}} = {- 1} \; \; $$
Member effective length factor
public
Effective length factors for members for idealized conditions of end restraint
Effective length factor
$$ k_{e_{AS4100}} = {1} \; \; $$
Capacity factor
public
Capacity factor for strength limit states as per AS 4100:2020 Table 3.4
$$ \phi_{ls_{AS4100}} = {0.6} \; \; $$
Flange thickness of monorail beam
public
Determine minimum flange thickness of monorail beam as per AS 1418.18:2001 Section 5.12.3.1
Minimum flange thickness
$$ T_{f_{AS1418}} = {K_L \cdot \sqrt{ {\left({ \left({ 2400 \cdot {C_F \over B_F} + 600 }\right) \cdot N_W }\right) \over \left({ f_y - 1.1 \cdot f_b }\right)} }} \; \; , {mm} $$
Torque
public
Torque
$$ T_{custom} = {P_t \cdot a_t} \; \; , {Nm} $$
Combined bending
public
Combined maximum bending with 2 equal point loads and distributed load.
Combined bending moment
$$ M_{B_{2pd}} = {M_{B_{d_{max}}} + M_{B_2p}} \; \; , {Nm} $$
Mean wheel load
public
Determine mean wheel load for crane traveling wheels.
$$ R_{wheel_{mean}} = {{( R_{min} + 2 \cdot R_{max} ) \over 3}} \; \; , {N} $$
Minimum crane wheel diameter
public
Calculate minimum crane wheel diameter.
Minimum wheel diameter
$$ D_{wheel_{min}} = {{R_{wheel_{mean}} \over \left({ 5.6 \cdot c_1 \cdot c_2 \cdot c_3 \cdot w_{rail_{ef}} }\right)}} \; \; , {mm} $$
Minimum shaft diameter
public
Calculate minimum diameter of shaft subject to bending by distributed load using AS1403 formula 1 (no tension & no torsion).
$$ D_{shaft_{min_d}} = {\left({ {F_S \over F_Y} \cdot M_{B_{d_{max}}} \cdot 10 ^ 4 }\right) ^ \left({ {1 \over 3} }\right)} \; \; , {mm} $$
Minimum shaft diameter
public
Calculate minimum diameter of shaft subject to bending by point load using AS1403 formula 1 (no tension & no torsion).
$$ D_{shaft_{min_p}} = {\left({ {F_S \over F_Y} \cdot M_{B_p} \cdot 10 ^ 4 }\right) ^ \left({ {1 \over 3} }\right)} \; \; , {mm} $$
« Previous
Next »
‹
1
2
3
4
5
6
7
8
9
›