Engineering
Amp
Sign in
Join
Calculations
Equipment
Engineering
Management
Projects
Piping
Mechanical
Structural
General
Equations
Area
Volume
Strength of Materials
Unit Conversions
Density
Flow
Force
Length
Pressure
Temperature
Torque
Velocity
Viscosity
Articles
Time
To Do
Home
Calculations
all fields
name
description
result name
result symbol
Search
Reset
Show Options
Hide Options
Contains
Match
Equal
* Search is not case sensitive
This functionality is in
beta stage
.
Calculations
Add Calculation
Sort by
Sort by
name
result name
result symbol
Order
ascending
descending
Sort
« Previous
Next »
‹
1
2
3
4
5
6
7
8
9
10
11
›
Minimum shaft diameter
public
Calculate minimum diameter of shaft subject to bending by distributed load using AS1403 formula 1 (no tension & no torsion).
$$ D_{shaft_{min_d}} = {\left({ {F_S \over F_Y} \cdot M_{B_{d_{max}}} \cdot 10 ^ 4 }\right) ^ \left({ {1 \over 3} }\right)} \; \; , {mm} $$
Minimum shaft diameter
public
Calculate minimum diameter of shaft subject to bending by point load using AS1403 formula 1 (no tension & no torsion).
$$ D_{shaft_{min_p}} = {\left({ {F_S \over F_Y} \cdot M_{B_p} \cdot 10 ^ 4 }\right) ^ \left({ {1 \over 3} }\right)} \; \; , {mm} $$
Minimum shaft diameter
public
Calculate minimum diameter of shaft subject to bending by point load using AS1403 formula 1 (no tension & no torsion).
$$ D_{shaft_{min_{p_{max}}}} = {\left({ {F_S \over F_Y} \cdot M_{B_{p_{max}}} \cdot 10 ^ 4 }\right) ^ \left({ {1 \over 3} }\right)} \; \; , {mm} $$
Critical buckling load - Johnson's formula
public
The critical buckling load for intermediate column using Johnson's formula. Applicable when Slenderness Ratio < Critical Slenderness Ratio.
Critical buckling load
$$ P_{cr_{J}} = {A \cdot \left({ \sigma_y - \left({ {1 \over E} }\right) \cdot \left({ {\sigma_y \over \left({ 2 \cdot \pi }\right)} }\right) ^ 2 \cdot \left({ {\left({ K \cdot L }\right) \over r} }\right) ^ 2 }\right)} \; \; , {N} $$
Moment of inertia for circular section
public
Calculate Moment of inertia for circular section with known diameter in mm.
Moment of inertia
$$ I_{circle_{d_{mm}}} = {\pi \cdot {D_{circle_{mm}} ^ 4 \over 64}} \; \; , {mm ^ 4} $$
Critical buckling load - Euler's formula
public
The critical buckling load for a long, slender column using Euler's formula. Applicable when Slenderness Ratio > Critical Slenderness Ratio.
Critical buckling load
$$ P_{cr_{E}} = {{\left({ \pi ^ 2 \cdot E \cdot I }\right) \over \left({ \left({ K \cdot L }\right) ^ 2 }\right)}} \; \; , {N} $$
Slenderness ratio
public
Calculates slenderness ratio. Input values in mm.
Slenderness ratio
$$ \lambda = {{\left({ K \cdot L }\right) \over r}} \; \; $$
Radius of gyration - circular section
public
Radius of gyration
$$ r = {\sqrt{ {I_{circle_{d_{mm}}} \over A_{circle_{d_{mm}}}} }} \; \; , {mm} $$
Critical slenderness ratio
public
The critical slenderness ratio is the point at which the failure mode transitions from yielding to buckling.
Critical Slenderness Ratio
$$ \lambda_{cr} = {\pi \cdot \sqrt{ {E \over \sigma_y} }} \; \; $$
Design bending moment in RHS
public
Design bending moment in RHS about the major principal axis analyzed by the elastic method as per AS4100:2020 Section 4.4.2.2
$$ M_{x_{AS4100}} = {\phi_{ls_{AS4100}} \cdot M_{b_{AS4100}}} \; \; , {Nm} $$
Sum of 2 forces
public
Total force
$$ F_{t2} = {F_1 + F_2} \; \; , {N} $$
Bolt group shear load eccentricity
public
Eccentricity of load causing shear stress from bolt group centroid.
Shear load eccentricity
$$ e_{s_{bg}} = {275} \; \; , {mm} $$
Horizontal force on critical bolt due to eccentricity
public
Critical bolt horizontal force
$$ F_{3_{bg}} = {P_{bg} \cdot e_{s_{bg}} \cdot \left({ n_{r_{bg}} - 1 }\right) \cdot {s_{r_{bg}} \over \left({ 2 \cdot I_{bg} }\right)}} \; \; , {kN} $$
Combined shear force per bolt in a bolt group
public
Calculates required shear or slip resistance of the critical bearing or friction grip bolt in bolt group. SABS0162.
$$ F_{R_{bg}} = {\sqrt{ F_{3_{bg}} ^ 2 + \left({ F_{1_{bg}} + F_{2_{bg}} }\right) ^ 2 }} \; \; , {kN} $$
Force due to friction
public
Force due to friction created by applying force normal to a plane.
Friction component
$$ F_{fc} = {F_n \cdot f_c} \; \; , {N} $$
Linear interpolation
public
Find Y coordinate for a specified X coordinate on a linear function determined by two points.
Y coordinate
$$ Y_{LI} = {y_1 + {\left({ y_2 - y_1 }\right) \over \left({ x_2 - x_1 }\right)} \cdot \left({ X - x_1 }\right)} \; \; $$
Maximum deflection
public
Maximum deflection in beam with fixed support on both ends due to two forces equally spaced from the middle.
Deflection
$$ \Delta_{max_{2pfs}} = {{\left({ P \cdot l ^ 3 }\right) \over \left({ 6 \cdot E \cdot I }\right)} \cdot \left({ {3 \over 4} \cdot \left({ {a \over l} }\right) ^ 2 - \left({ {a \over l} }\right) ^ 3 }\right)} \; \; , {mm} $$
Custom section moment of inertia
public
Calculate moment of inertia for custom section.
Moment of inertia
$$ I_{xx_{custom}} = {{\left({ B \cdot H ^ 3 - b \cdot h ^ 3 }\right) \over 12}} \; \; , {mm ^ 4} $$
Maximum bending deflection
public
Maximum deflection of simply supported beam subject to two equal loads at equal distance from supports.
Maximum deflection
$$ \Delta_{max_{2P_{1}}} = {{\left({ P \cdot a }\right) \over \left({ 24 \cdot E \cdot I }\right)} \cdot \left({ 3 \cdot l ^ 2 - 4 \cdot a ^ 2 }\right)} \; \; , {mm} $$
Cylinder volume
public
Volume of solid cylinder
Volume
$$ V_{cylinder} = {\pi \cdot h \cdot {D ^ 2 \over 4}} \; \; , {m ^ 3} $$
« Previous
Next »
‹
1
2
3
4
5
6
7
8
9
10
11
›