Engineering
Amp
Calculations
Engineering
Equipment
Disciplines
Management
Projects
Piping
Mechanical
Structural
General
Equations
Area
Volume
Strength of Materials
Unit Conversions
Density
Flow
Force
Length
Pressure
Temperature
Torque
Velocity
Viscosity
Blog
Time
Sign in
Join
Home
Calculations
This functionality is in
beta stage
.
Calculations
Add Calculation
Sort by
Sort by
title
result name
result symbol
Order
ascending
descending
Sort
all fields
name
description
result name
result symbol
Search
Reset
Show Options
Hide Options
Contains
Match
Equal
* Search is not case sensitive
« Previous
Next »
‹
1
2
3
4
›
Absolute pressure
public
Calculates absolute pressure for given gauge and atmospheric pressures.
$$ P_{abs} = {P_{atm} + P_{gauge}} \; \; , kPa $$
Angle
public
Convert angle from radians to degrees
Angle in degrees
$$ \alpha_{deg} = {\alpha_{rad} \cdot {180 \over \pi}} \; \; , {°} $$
Area of circle
public
Calculate area of circle with known diameter
Circle area
$$ A_{circle_{d_{mm}}} = {\pi \cdot {D_{circle_{mm}} ^ 2 \over 4}} \; \; , {mm ^ 2} $$
Atmospheric pressure
public
Pressure of the atmosphere at specific altitude.
Atmospheric pressure
$$ P_{atm} = {101.325} \; \; , kPa $$
Bearing life
public
Basic rating life of a ball bearing in revolutions.
Ball bearing revolutions
$$ L_{bearing_{rev_{ball}}} = {a_1 \cdot \left({ {C \over P_{dyn}} }\right) ^ 3} \; \; , {10 ^ 6 revolutions} $$
Bearing life
public
Basic rating life of a roller bearing in hours.
Roller bearing hours
$$ L_{bearing_{hr_{roller}}} = {{10 ^ 6 \over \left({ 60 \cdot n }\right)} \cdot L_{bearing_{rev_{ball}}}} \; \; , {h} $$
Bearing life
public
Basic rating life of a ball bearing in hours.
Ball bearing hours
$$ L_{bearing_{hr_{ball}}} = {{10 ^ 6 \over \left({ 60 \cdot n }\right)} \cdot L_{bearing_{rev_{ball}}}} \; \; , {h} $$
Bearing life
public
Basic rating life of a roller bearing in revolutions.
Roller bearing revolutions
$$ L_{bearing_{rev_{roller}}} = {a_1 \cdot \left({ {C \over P_{dyn}} }\right) ^ \left({ {10 \over 3} }\right)} \; \; , {10 ^ 6 revolutions} $$
Belt conveyor capacity
public
Theoretical mass flow rate of a belt conveyor with 5 roll idlers, based on bulk material properties .
Mass flow rate
$$ Q_{conv_{m_{th_{5}}}} = {A_{conv_{5}} \cdot v_{conv} \cdot 3600 \cdot \rho_{bm}} \; \; , {{t \over h}} $$
Belt conveyor capacity
public
Theoretical volumetric flow rate of a belt conveyor with 5 roll idlers, based on bulk material properties .
Volumetric flow rate
$$ Q_{conv_{v_{th_{5}}}} = {A_{conv_{5}} \cdot v_{conv} \cdot 3600} \; \; , {{m ^ 3 \over h}} $$
Belt conveyor capacity
public
Theoretical volumetric flow rate of a belt conveyor with 3 roll idlers, based on bulk material properties.
Volumetric flow rate
$$ Q_{conv_{v_{th_{3}}}} = {A_{conv_{3}} \cdot v_{conv} \cdot 3600} \; \; , {{m ^ 3 \over h}} $$
Belt conveyor capacity
public
Theoretical mass flow rate of a belt conveyor with 3 roll idlers, based on bulk material properties .
Mass flow rate
$$ Q_{conv_{m_{th_{3}}}} = {A_{conv_{3}} \cdot v_{conv} \cdot 3600 \cdot \rho_{bm}} \; \; , {{t \over h}} $$
Belt conveyor cross sectional area
public
Cross sectional area of belt conveyor for idlers with 5 rollers.
Cross sectional area
$$ A_{conv_{5}} = {\left({ l_{base} + l_{base} \cdot \cos( \lambda_{idler1_{rad}} ) }\right) \cdot l_{base} \cdot \sin( \lambda_{idler1_{rad}} ) + \left({ l_{base} + 2 \cdot l_{base} \cdot \cos( \lambda_{idler1_{rad}} ) + {( b_{belt} - 3 \cdot l_{base} ) \over 2} \cdot \cos( \lambda_{idler2_{rad}} ) }\right) \cdot {( b_{belt} - 3 \cdot l_{base} ) \over 2} \cdot \sin( \lambda_{idler2_{rad}} ) + \left({ 0.5 \cdot l_{base} + l_{base} \cdot \cos( \lambda_{idler1_{rad}} ) + {( b_{belt} - 3 \cdot l_{base} ) \over 2} \cdot \cos( \lambda_{idler2_{rad}} ) }\right) ^ 2 \cdot \tan( \beta_{surcharge_{rad}} )} \; \; , {m ^ 2} $$
Belt conveyor cross sectional area
public
Cross sectional area of belt conveyor for idlers with 3 rollers.
Cross sectional area
$$ A_{conv_{3}} = {\left({ l_{base} + {( b_{belt} - l_{base} ) \over 2} \cdot \cos( \lambda_{idler_{rad}} ) }\right) \cdot {( b_{belt} - l_{base} ) \over 2} \cdot \sin( \lambda_{idler_{rad}} ) + \left({ {( l_{base} + \left({ b_{belt} - l_{base} }\right) \cdot \cos( \lambda_{idler_{rad}} ) ) \over 2 }}\right) ^ 2 \cdot \tan( \beta_{surcharge_{rad}} )} \; \; , {m ^ 2} $$
Belt width
public
Width of conveyor belt.
Belt width
$$ B_{belt} = {1.200} \; \; , {m} $$
Bending moment
public
Maximum bending moment in simply supported beam under equally spaced in the middle uniform load.
$$ M_{B_{d_{max}}} = {\left({ {W_d \over 4} }\right) \cdot \left({ 2 \cdot a + b - {b \over 2} }\right)} \; \; , {Nm} $$
Bending moment
public
Bending moment in simply supported beam under equally spaced in the middle uniform load at point C.
$$ M_{B_{d_{C}}} = {{W_d \over 2} \cdot a} \; \; , {Nm} $$
Bending moment
public
Bending moment of simply supported beam subject to two equal loads at equal distance from supports.
Bending moment
$$ M_{B_2p} = {P \cdot a} \; \; , {Nm} $$
Bending moment
public
Maximum bending moment in simply supported beam under offset point load.
$$ M_{B_{p_{max}}} = {{( P \cdot a \cdot b ) \over \left({ a + b }\right)}} \; \; , {Nm} $$
Bending moment
public
Bending moment due to point load.
Bending moment
$$ M_{B_p} = {F_p \cdot r_{force_p}} \; \; , {Nm} $$
« Previous
Next »
‹
1
2
3
4
›