Engineering
Amp
Sign in
Join
Calculations
Equipment
Engineering
Management
Projects
Piping
Mechanical
Structural
General
Equations
Area
Volume
Strength of Materials
Unit Conversions
Density
Flow
Force
Length
Pressure
Temperature
Torque
Velocity
Viscosity
Articles
Time
To Do
Home
Calculations
all fields
name
description
result name
result symbol
Search
Reset
Show Options
Hide Options
Contains
Match
Equal
* Search is not case sensitive
This functionality is in
beta stage
.
Calculations
Add Calculation
Sort by
Sort by
name
result name
result symbol
Order
ascending
descending
Sort
« Previous
Next »
‹
1
2
3
4
5
6
7
8
9
10
›
Maximum deflection
public
Maximum deflection in beam with fixed support on both ends due to two forces equally spaced from the middle.
Deflection
$$ \Delta_{max_{2pfs}} = {{\left({ P \cdot l ^ 3 }\right) \over \left({ 6 \cdot E \cdot I }\right)} \cdot \left({ {3 \over 4} \cdot \left({ {a \over l} }\right) ^ 2 - \left({ {a \over l} }\right) ^ 3 }\right)} \; \; , {mm} $$
Custom section moment of inertia
public
Calculate moment of inertia for custom section.
Moment of inertia
$$ I_{xx_{custom}} = {{\left({ B \cdot H ^ 3 - b \cdot h ^ 3 }\right) \over 12}} \; \; , {mm ^ 4} $$
Maximum bending deflection
public
Maximum deflection of simply supported beam subject to two equal loads at equal distance from supports.
Maximum deflection
$$ \Delta_{max_{2P_{1}}} = {{\left({ P \cdot a }\right) \over \left({ 24 \cdot E \cdot I }\right)} \cdot \left({ 3 \cdot l ^ 2 - 4 \cdot a ^ 2 }\right)} \; \; , {mm} $$
Cylinder mass
public
Mass of solid cylinder
Solid cylinder mass
$$ m_{cylinder} = {V_{cylinder} \cdot \rho} \; \; , {kg} $$
Cylinder volume
public
Volume of solid cylinder
Volume
$$ V_{cylinder} = {\pi \cdot h \cdot {D ^ 2 \over 4}} \; \; , {m ^ 3} $$
Mass
public
Calculate mass for given volume and density.
Mass
$$ m_{custom} = {V \cdot \rho} \; \; , {kg} $$
Energy
public
Calculate energy based on mass and velocity.
$$ W_{mV} = {{\left({ m \cdot V ^ 2 }\right) \over 2}} \; \; , {J} $$
Crane classification
public
Group classification for the crane as a whole
Crane classification
$$ Crane class = A8 \; \; $$
Gravity of Earth
public
Standard Earth gravity
Gravity
$$ g = {9.80665} \; \; , {{m \over s ^ 2}} $$
Capacity factor
public
Capacity factor for strength limit states as per AS 4100:2020 Table 3.4
$$ \phi_{ls_{AS4100}} = {0.6} \; \; $$
Linear speed to rpm
public
Convert linear speed in m/min to rotating speed in rpm.
Linear speed
$$ n_{travel} = {{v \over \left({ \pi \cdot D }\right)}} \; \; , {rpm} $$
Output torque Tq - without inertia
public
Calculate output torque to be used in minimum shaft diameter calculation as per AS1403:2004 Table 1, for "Inertia not significant" option.
Output torque
$$ T_q = {T_M \cdot {N_1 \over N_2} \cdot \eta_{1\over2}} \; \; $$
Linear interpolation
public
Find Y coordinate for a specified X coordinate on a linear function determined by two points.
Y coordinate
$$ Y_{LI} = {y_1 + {\left({ y_2 - y_1 }\right) \over \left({ x_2 - x_1 }\right)} \cdot \left({ X - x_1 }\right)} \; \; $$
Combined shear force per bolt in a bolt group
public
Calculates required shear or slip resistance of the critical bearing or friction grip bolt in bolt group. SABS0162.
$$ F_{R_{bg}} = {\sqrt{ F_{3_{bg}} ^ 2 + \left({ F_{1_{bg}} + F_{2_{bg}} }\right) ^ 2 }} \; \; , {kN} $$
Combined tension and shear in bearing connection
public
Check combined shear and tension in bearing type bolted connection. SABS0162.
Combined tension and shear ratio
$$ r_{tsc} = {{T_{1_{bg}} \over T_r} + {F_{R_{bg}} \over V_r}} \; \; $$
Bolt group row spacing
public
$$ s_{r_{bg}} = {70} \; \; , {mm} $$
Bolt group polar moment of inertia
public
Polar moment of inertia
$$ I_{bg} = {\left({ n_{c_{bg}} \cdot {n_{r_{bg}} \over 12} }\right) \cdot \left({ s_{r_{bg}} ^ 2 \cdot \left({ n_{r_{bg}} ^ 2 - 1 }\right) + s_{c_{bg}} ^ 2 \cdot \left({ n_{c_{bg}} ^ 2 - 1 }\right) }\right)} \; \; , {mm ^ 2} $$
Bolt group shear load eccentricity
public
Eccentricity of load causing shear stress from bolt group centroid.
Shear load eccentricity
$$ e_{s_{bg}} = {275} \; \; , {mm} $$
Bolt group load
public
$$ P_{bg} = {90} \; \; , {kN} $$
Bolt group number of rows
public
$$ n_{r_{bg}} = {5} \; \; $$
« Previous
Next »
‹
1
2
3
4
5
6
7
8
9
10
›