Engineering
Amp
Calculations
Engineering
Equipment
Disciplines
Management
Projects
Piping
Mechanical
Structural
General
Equations
Area
Volume
Strength of Materials
Unit Conversions
Density
Flow
Force
Length
Pressure
Temperature
Torque
Velocity
Viscosity
Blog
Time
Sign in
Join
Home
Calculations
This functionality is in
beta stage
.
Calculations
Add Calculation
Sort by
Sort by
name
result name
result symbol
Order
ascending
descending
Sort
all fields
name
description
result name
result symbol
Search
Reset
Show Options
Hide Options
Contains
Match
Equal
* Search is not case sensitive
« Previous
Next »
‹
1
2
3
4
5
6
7
8
9
›
Torsional constant
public
Torsional constant for square and rectangular hollow sections
Torsional constant
$$ J_{RHS} = {t_{RHS} ^ 3 \cdot {h_{RHS} \over 3} + 2 \cdot k_{RHS} \cdot A_{h_{RHS}}} \; \; , {mm ^ 4} $$
Web thickness of single monorail beam
public
Determine minimum web thickness of single monorail beam as per AS 1418.18:2001 Section 5.12.3.2
Minimum web thickness
$$ T_{w_{AS1418}} = {\sqrt{ \left({ 240 \cdot {C_F \over B_F} + 60 }\right) \cdot {D \over \left({ 2 \cdot B_F }\right)} \cdot {N_W \over f_y }}} \; \; , {mm} $$
Mid-contour length
public
Length of mid-contour used in calculating torsion constant for hollow sections
Length
$$ h_{RHS} = {2 \cdot \left({ \left({ b_{RHS} - t_{RHS} }\right) + \left({ d_{RHS} - t_{RHS} }\right) }\right) - \left({ R_{o_{RHS}} + R_{i_{RHS}} }\right) \cdot \left({ 4 - \pi }\right)} \; \; , {mm} $$
Integration constant
public
Integration constant used to calculate torsional constant for square or rectangular hollow section
Integration constant
$$ k_{RHS} = {{( 2 \cdot A_{h_{RHS}} \cdot t_{RHS} ) \over h_{RHS}}} \; \; $$
Mid-contour area
public
Area enclosed by mid-contour used in calculating properties of square or rectangular hollow section
Area
$$ A_{h_{RHS}} = {\left({ b_{RHS} - t_{RHS} }\right) \cdot \left({ d_{RHS} - t_{RHS} }\right) - \left({ {( R_{o_{RHS}} + R_{i_{RHS}} ) \over 2 }}\right) ^ 2 \cdot \left({ 4 - \pi }\right)} \; \; , {mm ^ 2} $$
Inner corner radius
public
Inner corner radius of square or rectangular hollow section
IF
$ t_{RHS} $ > $ 3 $
THEN
$$ R_{i_{RHS}} = {1.5 \cdot t_{RHS}} \:, {mm} $$
OTHERWISE
$$ R_{i_{RHS}} = {1 \cdot t_{RHS}} \:, {mm} $$
Outer corner radius
public
Outer corner radius of square or rectangular hollow section
IF
$ t_{RHS} $ > $ 3 $
THEN
$$ R_{o_{RHS}} = {2.5 \cdot t_{RHS}} \:, {mm} $$
OTHERWISE
$$ R_{o_{RHS}} = {2 \cdot t_{RHS}} \:, {mm} $$
Hollow section thickness
public
Thickness of square or rectangular hollow section
Thickness
$$ t_{RHS} = {9} \; \; , {mm} $$
Width of hollow section
public
Width of hollow section
Width
$$ b_{RHS} = {150} \; \; , {mm} $$
Depth of hollow section
public
Depth of square or rectangular hollow section
Depth
$$ d_{RHS} = {250} \; \; , {mm} $$
Poisson's ratio
public
Poisson's ratio
$$ \nu = {0.25} \; \; $$
Young's modulus of elasticity
public
Young's modulus
$$ E = {200000} \; \; , {MPa} $$
Shear modulus of elasticity
public
Shear modulus
$$ G = {80000} \; \; , {MPa} $$
Bending stress
public
Calculate normal stress in simply supported beam, with known section modulus, due to bending caused by 2 symmetrical point loads.
Bending stress
$$ \sigma_{bend_{2p}} = {10 ^ 3 \cdot {M_{B_2p} \over W_{y_{section}}}} \; \; , {MPa} $$
Bending stress
public
Calculate normal stress in a section, with known section modulus, due to bending caused by distributed load
Bending stress
$$ \sigma_{bend_{d_{max}}} = {10 ^ 3 \cdot {M_{B_{d_{max}}} \over W_{y_{section}}}} \; \; , {MPa} $$
Section modulus of circular section
public
Section modulus of circular solid section with known diameter
Section modulus
$$ W_{y_{circle}} = {{( \pi \cdot D_{circle_{mm}} ^ 3 ) \over 32}} \; \; , {mm ^ 3} $$
Bending stress
public
Calculate normal stress in a solid circular section, with known diameter, due to bending moment.
Bending stress
$$ \sigma_{bend_{circle_p}} = {10 ^ 3 \cdot {M_{B_p} \over W_{y_{circle}}}} \; \; , {MPa} $$
Equivalent stress
public
Calculate von Mises stress
von Mises stress
$$ \sigma_{vonMises} = {\sqrt{ \sigma_x ^ 2 - \sigma_x \cdot \sigma_y + \sigma_y ^ 2 + 3 \cdot \tau_{xy} ^ 2 }} \; \; , {MPa} $$
Reaction force
public
Reaction force A due to point load P with hinge support at B
Reaction in A
$$ R_{p_{A_1}} = {P \cdot {b \over \left({ a + b }\right)}} \; \; , {N} $$
Maximum bending deflection
public
Maximum deflection of simply supported beam subject to two equal loads at equal distance from supports.
Maximum deflection
$$ \Delta_{max_{2p}} = {{( P \cdot l ^ 2 \cdot a ) \over \left({ 24 \cdot E \cdot I }\right)} \cdot \left({ 3 - 4 \cdot \left({ {a \over l} }\right) ^ 2 }\right)} \; \; , {mm} $$
« Previous
Next »
‹
1
2
3
4
5
6
7
8
9
›